OpenVNT: An Open Platform for VIS-NIR Technology

Author:

Kulko Roman-David1,Pletl Alexander1,Mempel Heike2ORCID,Wahl Florian1ORCID,Elser Benedikt1ORCID

Affiliation:

1. Technologie Campus Grafenau, Technische Hochschule Deggendorf, 94481 Grafenau, Germany

2. Institut für Gartenbau, Hochschule Weihenstephan-Triesdorf, 85354 Freising, Germany

Abstract

Spectrometers measure diffuse reflectance and create a “molecular fingerprint” of the material under investigation. Ruggedized, small scale devices for “in-field” use cases exist. Such devices might for example be used by companies in the food supply chain for inward inspection of goods. However, their application for the industrial Internet of Things workflows or scientific research is limited due to their proprietary nature. We propose an open platform for visible and near-infrared technology (OpenVNT), an open platform for capturing, transmitting, and analysing spectral measurements. It is built for use in the field, as it is battery-powered and transmits data wireless. To achieve high accuracy, the OpenVNT instrument contains two spectrometers covering a wavelength range of 400–1700 nm. We conducted a study on white grapes to compare the performance of the OpenVNT instrument against the Felix Instruments F750, an established commercial instrument. Using a refractometer as ground truth, we built and validated models to estimate the Brix value. As a quality measure, we used coefficient of determination of the cross-validation (R2CV) between the instrument estimation and ground truth. With 0.94 for the OpenVNT and 0.97 for the F750, a comparable R2CV was achieved for both instruments. OpenVNT matches the performance of commercially available instruments at one tenth of the price. We provide an open bill of materials, building instructions, firmware, and analysis software to enable research and industrial IOT solutions without the limitations of walled garden platforms.

Funder

German Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3