A Molecular Dynamics Study of Vasoactive Intestinal Peptide Receptor 1 and the Basis of Its Therapeutic Antagonism

Author:

Latek DorotaORCID,Langer Ingrid,Krzysko Krystiana,Charzewski Lukasz

Abstract

Vasoactive intestinal peptide receptor 1 (VPAC1) is a member of a secretin-like subfamily of G protein-coupled receptors. Its endogenous neuropeptide (VIP), secreted by neurons and immune cells, modulates various physiological functions such as exocrine and endocrine secretions, immune response, smooth muscles relaxation, vasodilation, and fetal development. As a drug target, VPAC1 has been selected for therapy of inflammatory diseases but drug discovery is still hampered by lack of its crystal structure. In this study we presented the homology model of this receptor constructed with the well-known web service GPCRM. The VPAC1 model is composed of extracellular and transmembrane domains that form a complex with an endogenous hormone VIP. Using the homology model of VPAC1 the mechanism of action of potential drug candidates for VPAC1 was described. Only two series of small-molecule antagonists of confirmed biological activity for VPAC1 have been described thus far. Molecular docking and a series of molecular dynamics simulations were performed to elucidate their binding to VPAC1 and resulting antagonist effect. The presented work provides the basis for the possible binding mode of VPAC1 antagonists and determinants of their molecular recognition in the context of other class B GPCRs. Until the crystal structure of VPAC1 will be released, the presented homology model of VPAC1 can serve as a scaffold for drug discovery studies and is available from the author upon request.

Funder

National Science Center in Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference89 articles.

1. Insights into the structure of class B GPCRs

2. Differential determinants for coupling of distinct G proteins with the class B secretin receptor

3. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide;Harmar;Pharmacol. Rev.,1998

4. International Union of Pharmacology. XXXV. The Glucagon Receptor Family

5. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3