Affiliation:
1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
Abstract
Human health, as well as the ecosystem’s natural equilibrium, may be jeopardized by the discharge of tetracycline into the aquatic environment. In order to effectively photocatalyzed the degradation of tetracycline in aqueous solution under visible light, this study used a two-step hydrothermal approach to produce composites of SrTiO3/TiO2 doped with two metal elements, lanthanum (La) and iron (Fe). The crystal structure, morphology, electronic structure, particle size, specific surface area and photocatalytic properties of the catalysts were assessed using a variety of methods, such as fluorescence spectroscopy, UV-Vis diffuse reflectance, X-ray diffraction, scanning electron microscopy, BET and particle size analysis. After 120 min of exposure to visible light, the co-doped catalyst showed a degradation rate of 99.1%, which was nine times greater than that of SrTiO3/TiO2 at catalyst dosing of 1.6 g/L and tetracycline concentration of 20 mg/L. The synthesized photocatalyst exhibited good tolerance to changes in pH, with the degradation efficiency of tetracycline remaining stable within the pH range of 4–10. The La-Sr (Ti-Fe) O3/TiO2 catalyst also demonstrated excellent photostability after recycling. The mechanism of tetracycline degradation is primarily attributed to the active oxidation by photogenerated holes and •O2−. Furthermore, tetracycline degradation pathways were analyzed via HPLC-MS to identify intermediates.
Funder
Natural Science Foundation of Shanghai
Central Public-interest Scientific Institution Basal Research Fund
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献