Multi-Objective Optimization of Organic Rankine Cycle (ORC) for Tractor Waste Heat Recovery Based on Particle Swarm Optimization

Author:

Pan Wanming,Li Junkang,Zhang Guotao,Zhou Le,Tu Ming

Abstract

Diesel engines are widely used in agricultural tractors. During field operations, the tractors operate at low speed and high load for a long time, the fuel efficiency is only about 15% to 35%, and the exhaust waste heat accounts for 38% to 45% of the energy released from the fuel. The use of tractor exhaust waste heat can effectively reduce fuel consumption and pollutant emissions, of which the organic Rankine cycle (ORC)-based waste heat recovery conversion efficiency is the highest. First, the diesel engine map is achieved through the test rig, a plate-fin evaporator is trial-produced based on the tractor size, and the thermodynamic and economic performance model of the ORC are established. Then, taking the thermal efficiency of ORC and the specific investment cost (SIC) as the objective function, the particle swarm optimization (PSO) algorithm and the technique for order of preference by similarity to ideal solution (TOPSIS) decision method were used to obtain the optimal operating parameter set under all working conditions. Finally, the results showed that the ORC thermal efficiency could reach a maximum of 12.76% and the corresponding SIC value was 8539.66 $/kW; the ORC net output power could be up to 8.31 kW compared with the system without ORC; and the maximum brake specific fuel consumption (BSFC) could be reduced by 8.3%. The improvement in the thermodynamic performance will lead to a sacrifice in economic performance, and at high speeds, the economic benefits and thermal efficiency reach a balance and show a better thermal economic performance. Recovering exhaust heat energy through ORC can reduce tractor fuel consumption and pollution emissions, which is one of the effective technical means to achieve “carbon neutrality” in agricultural production. At the same time, through the PSO algorithm, the optimal combination of ORC operating parameters is obtained, which ensures that the exhaust heat energy can be effectively recovered during the tractor field operation, and provides a basis for the adjustment of real-time work strategies for future research.

Funder

Fundamental Research Funds for the Central Universities

China Agriculture Research System of MOF and MARA

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3