Analyzing Power Law Extensions of Newtonian Gravity Using Differential Force Measurements

Author:

Bsaibes Thomas1ORCID,Decca Ricardo1ORCID

Affiliation:

1. Department of Physics, Indiana University, Indianapolis, IN 46202, USA

Abstract

The Standard Model is not a complete description of reality; it omits the existence of dark matter, dark energy, and an explanation as to why no CP violation has been observed. However, some of these phenomena could be explained through a new force mediated by a new boson. If such a boson were massless it would result in a power law potential and if massive the interaction would be Yukawa-like. A previous experiment employing the interactions of a micromechanical oscillator attached to spherical test mass was successful in placing the best limits on a mass–mass Yukawa-like interaction, but the data were never analyzed in the context of a power law. Here, those data are analyzed considering a power law for powers n = 1–5 where n is the number of boson exchanges. The results show that the limits obtained through power law analysis of these data are not better than the currently accepted limits. A discussion of an experiment design capable of producing better limits on power law extensions to the Standard Model is presented, and suggests that a micromechanical-oscillator-based experiment remains capable of improving the limits by at least one order of magnitude.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3