Abstract
There is currently interest in the digitalisation of metrology because technologies that can measure, analyse, and make critical decisions autonomously are beginning to emerge. The notions of metrological traceability and measurement uncertainty should be supported, following the recommendations in the Guide to the Expression of Uncertainty in Measurement (GUM). However, GUM offers no specific guidance. Here, we report on a Python package that implements algorithmic data processing using ‘uncertain numbers’, which satisfy the general criteria in GUM for an ideal format to express uncertainty. An uncertain number can represent a physical quantity that has not been determined exactly. Using uncertain numbers, measurement models can be expressed clearly and succinctly in terms of the quantities involved. The algorithms and simple data structures we use provide an example of how metrological traceability can be supported in digital systems. In particular, uncertain numbers provide a format to capture and propagate detailed information about quantities that influence a measurement along the various stages of a traceability chain. More detailed information about influence quantities can be exploited to extract more value from results for users at the end of a traceability chain.
Subject
General Agricultural and Biological Sciences
Reference25 articles.
1. Digital transformation of legal metrology—The European Metrology Cloud;Thiel;OIML Bull.,2018
2. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement JCGM 100:2008 (GUM 1995 with Minor Corrections),2008
3. Computing uncertainty withuncertain numbers
4. GUM Tree Calculator and v1.3.6https://github.com/MSLNZ/GTC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献