Decarbonizing the Chilean Electric Power System: A Prospective Analysis of Alternative Carbon Emissions Policies

Author:

Babonneau FrédéricORCID,Barrera JavieraORCID,Toledo Javiera

Abstract

In this paper, we investigate potential pathways for achieving deep reductions in CO2 emissions by 2050 in the Chilean electric power system. We simulate the evolution of the power system using a long-term planning model for policy analysis that identifies investments and operation strategies to meet demand and CO2 emissions reductions at the lowest possible cost. The model considers a simplified representation of the main transmission network and representative days to simulate operations considering the variability of demand and renewable resources at different geographical locations. We perform a scenario analysis assuming different ambitious renewable energy and emission reduction targets by 2050. As observed in other studies, we show that the incremental cost of reducing CO2 emissions without carbon capture or offset alternatives increases significantly as the system approaches zero emissions. Indeed, the carbon tax is multiplied by a factor of 4 to eliminate the last Mt of CO2 emissions, i.e., from 2000 to almost 8500 USD/tCO2 in 2050. This result highlights the importance of implementing technology-neutral mechanisms that help investors identify the most cost-efficient actions to reduce CO2 emissions. Our analysis shows that Carbon Capture and Storage could permit to divide by more than two the total system cost of a 100% renewable scenario. Furthermore, it also illustrates the importance of implementing economy-wide carbon emissions policies that ensure that the incremental costs to reduce CO2 emissions are roughly similar across different sectors of the economy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3