Applicability of Concrete–Steel Composite Piles for Offshore Wind Foundations

Author:

Shin Yunsup,Langford Thomas,Cho Kyunghwan,Park Jongheon,Ko JunyoungORCID

Abstract

Offshore wind-turbine support structures are largely made of steel since steel monopiles have accounted for the majority of installations in the last decade. As turbines become bigger, steel structures have led to an exponential increase in material and installation costs. From this point of view, the use of concrete for future support structures has been initiated. In this study, concrete–steel composite piles have been investigated. A pre-tensioned high strength concrete pile was placed in the lower part, mainly to support the axial load, and a steel pile in the upper part to resist the lateral load. A mechanical joint was adapted to connect the two different types of piles. Static axial, dynamic axial, and lateral load tests were performed to evaluate the load-displacement response of the composite pile, verify the integrity of the mechanical joint, and investigate its potential application to offshore wind foundations. This paper focused on the load-displacement response and the connection integrity; in particular, it investigated the lateral load-displacement response by comparing it to the results of beam-spring analysis. Based on the results from the field tests, a site-specific lateral load-displacement curve was suggested, and the connection integrity was verified.

Funder

Chungnam National University

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of flexural behavior of steel pile connected with clamp-type mechanical connector;Journal of Constructional Steel Research;2023-07

2. Improving evolutionary optimization with metamodel-based operators;11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES;2023

3. A Critical Analysis of Existing Intelligent Analytical Techniques for Pile Integrity Test;2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3