Screening of Mood Symptoms Using MMPI-2-RF Scales: An Application of Machine Learning Techniques

Author:

Kim SunhaeORCID,Lee Hye-Kyung,Lee KounseokORCID

Abstract

(1) Background: The MMPI-2-RF is the most widely used and most researched test among the tools for assessing psychopathology, and previous studies have established its validity. Mood disorders are the most common mental disorders worldwide; they present difficulties in early detection, go undiagnosed in many cases, and have a poor prognosis. (2) Methods: We analyzed a total of 8645 participants. We used the PHQ-9 to evaluate depressive symptoms and the MDQ to evaluate hypomanic symptoms. We used the 10 MMPI-2 Restructured Form scales and 23 Specific Problems scales for the MMPI-2-RF as predictors. We performed machine learning analysis using the k-nearest neighbor classification, linear discriminant analysis, and random forest classification. (3) Results: Through the machine learning technique, depressive symptoms were predicted with an AUC of 0.634–0.767, and the corresponding value range for hypomanic symptoms was 0.770–0.840. When using RCd to predict depressive symptoms, the AUC was 0.807, but this value was 0.840 when using linear discriminant classification. When predicting hypomanic symptoms with RC9, the AUC was 0.704, but this value was 0.767 when using the linear discriminant method. (4) Conclusions: Using machine learning analysis, we defined that participants’ mood symptoms could be classified and predicted better than when using the Restructured Clinical scales.

Funder

Ministry of Education

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3