An Accident Detection and Classification System Using Internet of Things and Machine Learning towards Smart City

Author:

Balfaqih MohammedORCID,Alharbi Soltan AbedORCID,Alzain Moutaz,Alqurashi Faisal,Almilad Saif

Abstract

Daily traffic accidents increase annually, causing a significant number of death and disability cases. Most of fatalities occur because of the late response to these emergency cases. The time after the traumatic injury is called the golden hour, where providing essential medical and surgical aid at that time increases the probability of saving human lives by one-third an average. Thus, the focus of this paper was to develop a system based on IoT for accident detection and classification. The system detects and classifies vehicle accidents based on severity level and reports the essential information about the accident to emergency services providers. The system consists of a microcontroller, GPS, and a group of sensors to determine different physical parameters related to vehicle motion. In addition, different types of machine learning classifiers were examined with the developed system to determine the most accurate classifier for the system. The classifiers are the Gaussian Mixture Model (GMM), Naive-Bayes Tree (NB), Decision Tree (DT), and Classification and Regression Trees (CART). The implementation of the system showed that GMM and CART models were better in terms of precision and recall. It was also shown that the severity of accidents depends mainly on the g-force value and fire occurrence.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Analysis of Jordan Road Accidents Severity Using Machine Learning;2023 International Symposium on Networks, Computers and Communications (ISNCC);2023-10-23

2. Resistors Over Digital Analog Converter on PRBS Threat Generator with PLL Synchronizer: Comparison Between R2R & Weighted;2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA);2023-10-10

3. Exploring a Conceptual Framework of Koreans’ Residential Satisfaction Based on Maslow’s Human Needs: A Qualitative and Quantitative Integrated Study;Sustainability;2023-09-28

4. Generating Network Intrusion Image through IGTD Algorithm for CNN Classification;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

5. Conceptual Design of Wireless Smart Grid for the Optimization of Electric Transmission in Iraq;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3