Fabrication of Au-Nanoparticle-Decorated Cu Mesh/Cu(OH)2@HKUST-1 Nanorod Arrays and Their Applications in Surface-Enhanced Raman Scattering

Author:

Huang Xiaoqiao,Cai Li,Fan Tingting,Sun Kexi,Yao Le,Zhang Lijun,Li ZhongboORCID

Abstract

Here we report a simple fabrication method for large-scale hybrid surface-enhanced Raman scattering (SERS) active substrates composed of Au-nanoparticle-decorated three-dimensional (3D) Cu(OH)2@HKUST-1 (Cu3(btc)2, H3btc = 1,3,5-benzenetricarboxylic acid) nanorod arrays on a woven Cu mesh (Cu mesh/Cu(OH)2@HKUST-1@Au). Cu(OH)2 nanorods were first obtained from a simple in situ chemical engraving Cu mesh and then utilized as self-sacrificing templates to achieve HKUST-1 nanocube-assembled nanorods; finally, Au nanoparticles (Au NPs) were sputtered onto the Cu(OH)2@HKUST-1 nanorods. Due to the large surface area, the three-dimensional Cu mesh/Cu(OH)2@HKUST-1 nanorods could load high-density Au NPs and capture target detection molecules, which is beneficial to the formation of a strong electromagnetic field coupling between Au NPs, and provides abundant “hot spots” for a sensitive and uniform SERS effect. Using the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays as the SERS substrate, 10−9 M Rhodamine 6G and 10−8 M 4-aminothiophenolcan were identified. To verify their practical application, the fabricated arrays were employed as SERS substrates for the detection of thiram, and 10−8 M thiram could be recognized. The hybrid SERS substrates show potential applications in the field of environmental pollutant detection and this is of great significance to the sustainable development of the environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3