Affiliation:
1. Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany
2. Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
Abstract
Movements in plants, such as the coiling of tendrils in climbing plants, have been studied as inspiration for coiling actuators in robotics. A promising approach to mimic this behavior is the use of multimaterial systems that show different elastic moduli. Here, we report on the development of magnetically controllable/triggerable multimaterial fibers (MMFs) as artificial tendrils, which can reversibly coil and uncoil on stimulation from an alternating magnetic field. These MMFs are based on deformed shape-memory fibers with poly[ethylene-co-(vinyl acetate)] (PEVA) as their core and a silicone-based soft elastomeric magnetic nanocomposite shell. The core fiber provides a temperature-dependent expansion/contraction that propagates the coiling of the MMF, while the shell enables inductive heating to actuate the movements in these MMFs. Composites with mNP weight content ≥ 15 wt% were required to achieve heating suitable to initiate movement. The MMFs coil upon application of the magnetic field, in which a degree of coiling N = 0.8 ± 0.2 was achieved. Cooling upon switching OFF the magnetic field reversed some of the coiling, giving a reversible change in coiling ∆n = 2 ± 0.5. These MMFs allow magnetically controlled remote and reversible actuation in artificial (soft) plant-like tendrils, and are envisioned as fiber actuators in future robotics applications.
Funder
Helmholtz Association through program-oriented funding
European Union’s Horizon 2020 research and innovation program
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献