Affiliation:
1. College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 411201, China
2. Upgrading Office of Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
3. College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
4. College of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
Abstract
In this study, CTS-GSH was prepared by grafting thiol (–SH) groups onto chitosan (CTS), which was characterized through Fourier Transform Infrared (FT-IR) spectra, Scanning Electron Microscopy (SEM) and Differential Thermal Analysis–Thermogravimetric Analysis (DTA-TG). The performance of CTS-GSH was evaluated by measuring Cr(VI) removal efficiency. The –SH group was successfully grafted onto CTS, forming a chemical composite, CTS-GSH, with a rough, porous and spatial network surface. All of the molecules tested in this study were efficient at removing Cr(VI) from the solution. The more CTS-GSH added, the more Cr(VI) removed. When a suitable dosage of CTS-GSH was added, Cr(VI) was almost completely removed. The acidic environment at pH 5–6 was beneficial for the removal of Cr(VI), and at pH 6, the maximum removal efficiency was achieved. Further experimentation showed that with 100.0 mg/L CTS-GSH for the disposal of 5.0 mg/L Cr(VI) solution, the removal rate of Cr(VI) reached 99.3% with a slow stirring time of 8.0 min and sedimentation time of 3 h; the presence of four common ions, including Mg2+, Ca2+, SO42− and CO32−, had an inhibitory effect on CTS-GSH’s ability to remove Cr(VI) from the aqueous solution, and more CTS-GSH was needed to reduce this inhibiting action. Overall, CTS-GSH exhibited good results in Cr(VI) removal, and thus has good potential for the further treatment of heavy metal wastewater.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of Hunan Province
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献