Evolutionary Multi-Objective Optimization of Extrusion Barrier Screws: Data Mining and Decision Making

Author:

Gaspar-Cunha António1ORCID,Costa Paulo1,Delbem Alexandre2ORCID,Monaco Francisco2ORCID,Ferreira Maria José3,Covas José1ORCID

Affiliation:

1. Institute of Polymers and Composites, University of Minho, 4710-057 Braga, Portugal

2. Institute of Mathematics and Computer Science, University of São Paulo, São Paulo 05508-060, Brazil

3. Portuguese Footwear Research and Technology Centre, 3700-121 São João da Madeira, Portugal

Abstract

Polymer single-screw extrusion is a major industrial processing technique used to obtain plastic products. To assure high outputs, tight dimensional tolerances, and excellent product performance, extruder screws may show different design characteristics. Barrier screws, which contain a second flight in the compression zone, have become quite popular as they promote and stabilize polymer melting. Therefore, it is important to design efficient extruder screws and decide whether a conventional screw will perform the job efficiently, or a barrier screw should be considered instead. This work uses multi-objective evolutionary algorithms to design conventional and barrier screws (Maillefer screws will be studied) with optimized geometry. The processing of two polymers, low-density polyethylene and polypropylene, is analyzed. A methodology based on the use of artificial intelligence (AI) techniques, namely, data mining, decision making, and evolutionary algorithms, is presented and utilized to obtain results with practical significance, based on relevant performance measures (objectives) used in the optimization. For the various case studies selected, Maillefer screws were generally advantageous for processing LDPE, while for PP, the use of both types of screws would be feasible.

Funder

Fundação para a Ciência e Tecnologia

POR Norte

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3