Control of Particle Properties in Thermally-Induced Precipitation of Polyetherimide

Author:

Unger Laura1,Fischer Sybille2,Sesseg Jens P. W.2,Pfister Andreas2,Schmidt Jochen1ORCID,Bück Andreas1ORCID

Affiliation:

1. Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany

2. EOS GmbH Electro Optical Systems, Robert-Stirling-Ring 1, 82152 Krailling, Germany

Abstract

The feasibility of thermally-induced phase separation and crystallization for the production of semi-crystalline polyetherimide (PEI) microparticles from an amorphous feedstock has been reported recently. Here, we investigate process parameter dependencies for designing and control of particle properties. A stirred autoclave was used to extend the process controllability, as the applied process parameters, e.g., stirring speed and cooling rate, were adjusted. By increasing the stirring speed, the particle size distribution was shifted to larger values (correlation factor ρ = 0.77). Although, the enhanced droplet breakup, induced by the higher stirring speed, led to the formation of smaller particles (ρ = −0.68), broadening the particle size distribution. The cooling rate showed a significant influence on the melting temperature, reducing it with a correlation factor of ρ = −0.77, as confirmed by differential scanning calorimetry. Lower cooling rates led to larger crystalline structures and enhanced the degree of crystallinity. The polymer concentration mainly affected the resulting enthalpy of fusion, as an increased polymer fraction enhanced the latter (correlation factor ρ = 0.96). In addition, the circularity of the particles was positively correlated to the polymer fraction (ρ = 0.88). The structure assessed via X-ray diffraction, was not affected.

Funder

Deutsche Forschungsgemeinschaft

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3