Storage Stability of 6FDA-DMB Polyamic Acid Solution Detected by Gel Permeation Chromatography Coupled with Multiple Detectors

Author:

Hong Mei12,Liu Wei1,Gao Runxiang12,Li Rui12,Liu Yonggang1,Dai Xuemin3,Kang Yu1,Qiu Xuepeng3,Pan Yanxiong12,Ji Xiangling12

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

3. CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

Polyamic acid (PAA) is the precursor of polyimide (PI), and its solution’s properties have a direct influence on the final performances of PI resins, films, or fibers. The viscosity loss of a PAA solution over time is notorious. A stability evaluation and revelation of the degradation mechanism of PAA in a solution based on variations of molecular parameters other than viscosity with storage time is necessary. In this study, a PAA solution was prepared through the polycondensation of 4,4′-(hexafluoroisopropene) diphthalic anhydride (6FDA) and 4,4′-diamino-2,2′-dimethylbiphenyl (DMB) in DMAc. The stability of a PAA solution stored at different temperatures (−18, −12, 4, and 25 °C) and different concentrations (12 wt% and 0.15 wt%) was systematically investigated by measuring the molecular parameters, including Mw, Mn, Mw/Mn, Rg, and [η], using gel permeation chromatography coupled with multiple detectors (GPC-RI-MALLS-VIS) in a mobile phase 0.02 M LiBr/0.20 M HAc/DMF. The stability of PAA in a concentrated solution decreased, as shown by the reduction ratio of Mw from 0%, 7.2%, and 34.7% to 83.8% and that of Mn from 0%, 4.7%, and 30.0% to 82.4% with an increase of temperature from −18, −12, and 4 to 25 °C, respectively, after storage for 139 days. The hydrolysis of PAA in a concentrated solution was accelerated at high temperatures. Notably, at 25 °C, the diluted solution was much less stable than the concentrated one and exhibited an almost linear degradation rate within 10 h. The Mw and Mn decreased rapidly by 52.8% and 48.7%, respectively, within 10 h. Such faster degradation was caused by a greater water ratio and less entanglement of chains in the diluted solution. The degradation of (6FDA-DMB) PAA in this study did not follow the chain length equilibration mechanism reported in literature, given that both Mw and Mn declined simultaneously during storage.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3