Non-Coplanar Diphenyl Fluorene and Weakly Polarized Cyclohexyl Can Effectively Improve the Solubility and Reduce the Dielectric Constant of Poly (Aryl Ether Ketone) Resin

Author:

Bao Feng1ORCID,Liu Yanxing1,Shi Ludi2ORCID,Cui Jinze1,Ji Muwei3,Liu Huichao1,Yu Jiali1,Zhu Caizhen1,Xu Jian1

Affiliation:

1. Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

3. College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China

Abstract

With the rapid development of high-frequency communication and large-scale integrated circuits, insulating dielectric materials require a low dielectric constant and dielectric loss. Poly (aryl ether ketone) resins (PAEK) have garnered considerable attention as an intriguing class of engineering thermoplastics possessing excellent chemical and thermal properties. However, the high permittivity of PAEK becomes an obstacle to its application in the field of high-frequency communication and large-scale integrated circuits. Therefore, reducing the dielectric constant and dielectric loss of PAEK while maintaining its excellent performance is critical to expanding the PAEK applications mentioned above. This study synthesized a series of poly (aryl ether ketone) resins that are low dielectric, highly thermally resistant, and soluble, containing cyclohexyl and diphenyl fluorene. The effects of cyclohexyl contents on the properties of a PAEK resin were studied systematically. The results showed that weakly-polarized cyclohexyl could reduce the molecular polarization of PAEK, resulting in low permittivity and high transmittance. The permittivity of PAEK is 2.95–3.26@10GHz, and the transmittance is 65–85%. In addition, the resin has excellent solubility and can be dissolved in NMP, DMF, DMAc, and other solvents at room temperature. Furthermore, cyclohexyl provided PAEK with excellent thermal properties, including a glass transition temperature of 239–245 °C and a 5% thermogravimetric temperature, under a nitrogen atmosphere of 469–534 °C. This makes it a promising candidate for use in high-frequency communications and large-scale integrated circuits.

Funder

Songshan Lake Materials Laboratory

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3