Enhanced Yield of Large-Sized Ti3C2Tx MXene Polymers Nanosheets via Cyclic Ultrasonic-Centrifugal Separation

Author:

Hou Kun12,Yang Yafeng2,Zhou Hu1,Chen Xiangmeng2,Ge Shengbo3ORCID

Affiliation:

1. Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Henan Province Engineering Research Centre for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China

3. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Water pollution has spurred the development of membrane separation technology as a potential means of solving the issue. In contrast to the irregular and asymmetric holes that are easily made during the fabrication of organic polymer membranes, forming regular transport channels is essential. This necessitates the use of large-size, two-dimensional materials that can enhance membrane separation performance. However, some limitations regarding yield are associated with preparing large-sized MXene polymer-based nanosheets, which restrict their large-scale application. Here, we propose a combination of wet etching and cyclic ultrasonic-centrifugal separation to meet the needs of the large-scale production of MXene polymers nanosheets. It was found that the yield of large-sized Ti3C2Tx MXene polymers nanosheets reached 71.37%, which was 2.14 times and 1.77 times higher than that prepared with continuous ultrasonication for 10 min and 60 min, respectively. The size of the Ti3C2Tx MXene polymers nanosheets was maintained at the micron level with the help of the cyclic ultrasonic-centrifugal separation technology. In addition, certain advantages of water purification were evident due to the possibility of attaining the pure water flux of 36.5 kg m−2 h−1 bar−1 for the Ti3C2Tx MXene membrane prepared with cyclic ultrasonic-centrifugal separation. This simple method provided a convenient way for the scale-up production of Ti3C2Tx MXene polymers nanosheets.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

science and technology innovation Program of Hunan Province

Deputy General Project of Science and Technology of Jiangsu Province

Innovation Training Program for College students of Nanjing Forestry University

Hunan Provincial Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3