Abstract
We investigated the influence of two fillers—CB (carbon black) and silica—on the H2 permeation of EPDM polymers crosslinked with sulfur in the pressure ranges 1.2–90 MPa. H2 uptake in the CB-blended EPDM revealed dual sorption (Henry’s law and Langmuir model) when exposed to pressure. This phenomenon indicates that H2 uptake is determined by the polymer chain and filler-surface absorption characteristics. Moreover, single sorption characteristics for neat and silica-blended EPDM specimens obey Henry’s law, indicating that H2 uptake is dominated by polymer chain absorption. The pressure-dependent diffusivity for the CB-filled EPDM is explained by Knudsen and bulk diffusion, divided at the critical pressure region. The neat and silica-blended EPDM specimens revealed that bulk diffusion behaviors decrease with decreasing pressure. The H2 diffusivities in CB-filled EPDM composites decrease because the impermeable filler increases the tortuosity in the polymer and causes filler–polymer interactions; the linear decrease in diffusivity in silica-blended EPDM was attributed to an increase in the tortuosity. Good correlations of permeability with density and tensile strength were observed. From the investigated relationships, it is possible to select EPDM candidates with the lowest H2-permeation properties as seal materials to prevent gas leakage under high pressure in H2-refueling stations.
Funder
Korea Research Institute of Standards and Science
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献