Affiliation:
1. Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Abstract
The solidification of chromium-contaminated soil using polyurethane (PU) was systematically investigated. The unconfined compression test was conducted to investigate the effects of the curing time, PU dosage and the content of chromium ions on the unconfined compressive strength (UCS) of chromium-contaminated soil. The effect of the PU dosage on the pore structure was investigated using nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM), and the mechanism of strength change was revealed by combining the strength law with the pore structure development law. In addition, the ability of the PU to solidify the chromium-contaminated soil was studied by the toxicity characteristic leaching procedure (TCLP). According to the above test results, the UCS and the ability of the PU to solidify the chromium ions increased with the increase in curing time. The NMR tests showed that with the increase in PU dosage, the porosity decreased and the soil became more compact, hence increasing the strength. When the chromium ion content was 2000 mg/kg and the PU dosage was 8%, the strength of the sample was 0.37 MPa after curing for 24 h, which met the requirement of 0.35 MPa set by the U.S. Environmental Protection Agency. Consequently, PU is a solidification agent with high-early strength.
Funder
National Natural Science Foundation of China
Science Fund for Distinguished Young Scholars of Hubei Province
Outstanding Young and middle-aged Science and Technology Innovation Team of colleges and universities in Hubei Province
Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献