Numerical Approach to Simulate the Mechanical Behavior of Biodegradable Polymers during Erosion

Author:

Vieira André F. C.1ORCID,Da Silva Enio H. P.2ORCID,Ribeiro Marcelo L.2ORCID

Affiliation:

1. Center for Mechanical and Aerospace Science and Technologies (C-MAST-UBI), Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal

2. Aeronautical Engineering Department, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil

Abstract

Biodegradable polymers find applications in many market segments. The ability to meet mechanical requirements within a certain time range, after which it degrades and is naturally absorbed, can be used to produce short-term use products that can be easily disposable with less environmental impact. In the segment of medical devices used in regenerative medicine, these materials are used to produce temporary implants that are naturally assimilated by the human body, avoiding a removal surgery. However, the design of these temporary devices still presents great challenges, namely in the verification of the main requirement: the lifetime of the device, associated with the progressive loss of mechanical properties, until its complete erosion and assimilation. Thus, in this study, a numerical approach is proposed to simulate the polymeric device’s mechanical behavior during its hydrolytic degradation by combining the hydrolysis kinetics, that depends on mechanical factors and promotes a decrease of molecular weight and consequent decrease of mechanical performance, and erosion, when molecular weight reaches a threshold value and the polymer becomes soluble and diffuses outward, resulting in mass loss and decreasing cross-sectional area, which also contributes to the mechanical performance reduction of the device. A phenomenological approach, using the combination of continuum-based hydrolytic damage for the evolution of mechanical properties that depends on the stress field and further removal of the degraded element (to simulate mass loss) was used. Both elastoplastic and hyperelastic constitutive models were applied on this study, where the material model parameters locally depend on the molecular weight.

Funder

Center for Mechanical and Aerospace Science and Technologies

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3