Improving the Integrated Fabrication of Insulation Systems in Electric Drives by Injection Molding of Thermosets Due to Processing Conditions and Slot Design

Author:

Rösel Uta1ORCID,Kneidl Maximilian2,Franke Jörg2,Drummer Dietmar1

Affiliation:

1. Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

2. Institute for factory Automation and Production Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Abstract

The expanding demand for electro mobility in general and specifically for electrified vehicles requires the expansion of electro mobility technology with respect to variations in the requirements of the process and the application. Within the stator, the electrical insulation system has a high impact on the application properties. So far, limitations, such as the identification of suitable materials for the stator insulation or high costs in the processes, have hindered the implementation of new applications. Therefore, a new technology that allows integrated fabrication via the injection molding of thermosets is founded in order to expand the applications of stators. The possibility of the integrated fabrication of insulation systems to meet the demands of the application can be improved by the processing conditions and the slot design. Within this paper, two epoxy (EP) types with different fillers are investigated to show the impact of the fabrication process in terms of different parameters; these include the holding pressure or the temperature setup, as well as the slot design and with that the flow conditions. To evaluate the improvement in the insulation system of electric drives, a single slot sample, consisting of two parallel copper wires, was used. Then, the two parameters of the average partial discharge (PD) and the partial discharge extinction voltage (PDEV), as well as the full encapsulation detected by microscopy images, were analyzed. It was shown that both characteristics (electric properties—PD and PDEV; full encapsulation) could be improved in terms of an increase in the holding pressure (up to 600 bar) or a reduction in the heating time (around 40 s), as well as the injection speed (down to 15 mm/s). Further, an improvement in the properties can be reached by increasing the space between the wires, as well as the wire and the stack, due to a higher slot depth or by implementing flow-improving grooves that have a positive effect on the flow conditions. With that, the optimization of the integrated fabrication of insulation systems in electric drives via the injection molding of thermosets was enabled with respect to the process conditions and the slot design.

Funder

The AIF project GmbH

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology for the Mechanical Characterization of Rectangular Winding Wire in the Context of Electric Mobility;2023 13th International Electric Drives Production Conference (EDPC);2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3