Characterizing the Impact of Chitosan on the Nucleation and Crystal Growth of Ritonavir from Supersaturated Solutions

Author:

Budiman Arif1,Kalina Kalina1,Aristawidya Levina1ORCID,Shofwan Adnan Aly Al1,Rusdin Agus2,Aulifa Diah Lia2ORCID

Affiliation:

1. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

2. Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia

Abstract

The addition of polymeric materials is often used to delay nucleation or crystal growth and maintain the high supersaturation of amorphous drugs. Therefore, this study aimed to investigate the impact of chitosan on the supersaturation behavior of drugs with a low recrystallization tendency and elucidate the mechanism of its crystallization inhibition in an aqueous solution. It was carried out using ritonavir (RTV) as a model of poorly water-soluble drugs categorized as class III of Taylor’s classification, while chitosan was used as a polymer, and hypromellose (HPMC) was used for comparison. The inhibition of the nucleation and crystal growth of RTV by chitosan was examined by measuring the induction time. The interactions of RTV with chitosan and HPMC were evaluated by NMR measurements, FT-IR, and an in silico analysis. The results showed that the solubilities of amorphous RTV with and without HPMC were quite similar, while the amorphous solubility was significantly increased by the chitosan addition due to the solubilization effect. In the absence of the polymer, RTV started to precipitate after 30 min, indicating that it is a slow crystallizer. Chitosan and HPMC effectively inhibited the nucleation of RTV, as reflected by a 48–64-fold enhancement in the induction time. Furthermore, NMR, FT-IR, and in silico analysis demonstrated that the hydrogen bond interaction between the amine group of RTV and a proton of chitosan, as well as the carbonyl group of RTV and a proton of HPMC, was observed. This indicated that the hydrogen bond interaction between RTV and chitosan as well as HPMC can contribute to the crystallization inhibition and maintenance of RTV in a supersaturated state. Therefore, the addition of chitosan can delay nucleation, which is crucial for stabilizing supersaturated drug solutions, specifically for a drug with a low crystallization tendency.

Funder

National Research and Innovation Agency

Indonesia Endowment Funds for Education (LPDP) to Arif Budiman

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference35 articles.

1. Poor aqueous solubility—An industry wide problem in drug discovery;Lipinski;Am. Pharm. Rev.,2002

2. Oral lipid-based formulations;Hauss;Adv. Drug Deliv. Rev.,2007

3. Thermal Solvent-Free Method of Loading of Pharmaceutical Cocrystals into the Pores of Silica Particles: A Case of Naproxen/Picolinamide Cocrystal;Skorupska;J. Phys. Chem. C,2016

4. Aspartame as a Co-Former in Co-Amorphous Systems;Wu;Int. J. Pharm.,2018

5. Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica;Budiman;Int. J. Pharm.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3