Hybrid Hydrogels for Neomycin Delivery: Synergistic Effects of Natural/Synthetic Polymers and Proteins

Author:

Bercea Maria1ORCID,Plugariu Ioana-Alexandra1,Gradinaru Luiza Madalina1ORCID,Avadanei Mihaela1,Doroftei Florica1,Gradinaru Vasile Robert2ORCID

Affiliation:

1. “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania

2. Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania

Abstract

This paper reports new physical hydrogels obtained by the freezing/thawing method. They include pullulan (PULL) and poly(vinyl alcohol) (PVA) as polymers, bovine serum albumin (BSA) as protein, and a tripeptide, reduced glutathione (GSH). In addition, a sample containing PULL/PVA and lysozyme was obtained in similar conditions. SEM analysis evidenced the formation of networks with porous structure. The average pore size was found to be between 15.7 μm and 24.5 μm. All samples exhibited viscoelastic behavior typical to networks, the hydrogel strength being influenced by the protein content. Infrared spectroscopy analysis revealed the presence of intermolecular hydrogen bonds and hydrophobic interactions (more pronounced for BSA content between 30% and 70%). The swelling kinetics investigated in buffer solution (pH = 7.4) at 37 °C evidenced a quasi-Fickian diffusion for all samples. The hydrogels were loaded with neomycin trisulfate salt hydrate (taken as a model drug), and the optimum formulations (samples containing 10–30% BSA or 2% lysozyme) proved a sustained drug release over 480 min in simulated physiological conditions. The experimental data were analyzed using different kinetic models in order to investigate the drug release mechanism. Among them, the semi-empirical Korsmeyer–Peppas and Peppas–Sahlin models were suitable to describe in vitro drug release mechanism of neomycin sulfate from the investigated hybrid hydrogels. The structural, viscoelastic, and swelling properties of PULL/PVA/protein hybrid hydrogels are influenced by their composition and preparation conditions, and they represent important factors for in vitro drug release behavior.

Funder

Executive Agency for Financing Higher Education, Research, Development and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3