Experimental and Numerical Investigation on the Influence Factors of Damage Interference of Patch-Repaired CFRP Laminates under Double Impacts

Author:

Sun Zhenhui1,Li Cheng1,Tie Ying1

Affiliation:

1. School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, Zhengzhou 450001, China

Abstract

The impact responses of a patch-repaired carbon-fiber-reinforced polymer (CFRP) specimen under double impacts were compared to study the damage interference mechanism through the combination of experiment and numerical analysis. A three-dimensional finite element model (FEM) with iterative loading based on continuous damage mechanics (CDM) and a cohesive zone model (CZM) was employed to simulate the double-impacts testing with an improved movable fixture at an impact distance of 0 mm–50 mm. The influence of impact distance and impact energy on the damage interference was explored by mechanical curves and delamination damage diagrams of the repaired laminates. When impactors fell within the range of the patch with an impact distance of 0 mm–25 mm at a low level of impact energy, delamination damage of the parent plate caused by the two impacts overlapped, resulting in damage interference. With the continuing increase in impact distance, the damage interference gradually disappeared. When impactors fell on the edge of the patch, the damage area caused by the first impact on the left half of the adhesive film gradually enlarged, and as the impact energy increased from 5 J to 12.5 J, the damage interference caused by the first impact on the second impact was gradually enhanced.

Funder

National Natural Science Foundations of China

Key Scientific and Technological Project in Henan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3