Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection

Author:

Li Shuo1,Shi Li1,Ye Ting1,Huang Biao1,Qin Yuan1,Xie Yongkang1,Ren Xiaoyuan1,Zhao Xueqin1

Affiliation:

1. Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

Antibiotic abuse in the conventional treatment of microbial infections, such as inflammatory bowel disease, induces cumulative toxicity and antimicrobial resistance which requires the development of new antibiotics or novel strategies for infection control. Crosslinker-free polysaccharide-lysozyme microspheres were constructed via an electrostatic layer-by-layer self-assembly technique by adjusting the assembly behaviors of carboxymethyl starch (CMS) on lysozyme and subsequently outer cationic chitosan (CS) deposition. The relative enzymatic activity and in vitro release profile of lysozyme under simulated gastric and intestinal fluids were investigated. The highest loading efficiency of the optimized CS/CMS-lysozyme micro-gels reached 84.9% by tailoring CMS/CS content. The mild particle preparation procedure retained relative activity of 107.4% compared with free lysozyme, and successfully enhanced the antibacterial activity against E. coli due to the superposition effect of CS and lysozyme. Additionally, the particle system showed no toxicity to human cells. In vitro digestibility testified that almost 70% was recorded in the simulated intestinal fluid within 6 h. Results demonstrated that the cross-linker-free CS/CMS-lysozyme microspheres could be a promising antibacterial additive for enteric infection treatment due to its highest effective dose (573.08 μg/mL) and fast release at the intestinal tract.

Funder

Zhejiang Provincial Natural Science Foundation

Founds of Science Technology Department of Zhejiang Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3