A Bayesian Tensor Decomposition Method for Joint Estimation of Channel and Interference Parameters

Author:

Sun Yuzhe1,Wang Wei1ORCID,Wang Yufan1,He Yuanfeng1

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

Bayesian tensor decomposition has been widely applied in channel parameter estimations, particularly in cases with the presence of interference. However, the types of interference are not considered in Bayesian tensor decomposition, making it difficult to accurately estimate the interference parameters. In this paper, we present a robust tensor variational method using a CANDECOMP/PARAFAC (CP)-based additive interference model for multiple input–multiple output (MIMO) with orthogonal frequency division multiplexing (OFDM) systems. A more realistic interference model compared to traditional colored noise is considered in terms of co-channel interference (CCI) and front-end interference (FEI). In contrast to conventional algorithms that filter out interference, the proposed method jointly estimates the channel and interference parameters in the time–frequency domain. Simulation results validate the correctness of the proposed method by the evidence lower bound (ELBO) and reveal the fact that the proposed method outperforms traditional information-theoretic methods, tensor decomposition models, and robust model based on CP (RCP) in terms of estimation accuracy. Further, the interference parameter estimation technique has profound implications for anti-interference applications and dynamic spectrum allocation.

Funder

National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3