Implementation and Analyses of an Eco-Driving Algorithm for Different Battery Electric Powertrain Topologies Based on a Split Loss Integration Approach

Author:

Koch AlexanderORCID,Nicoletti Lorenzo,Herrmann Thomas,Lienkamp Markus

Abstract

Eco-driving algorithms optimize the speed profile to reduce the energy consumption of a vehicle. This paper presents an eco-driving algorithm for battery electric powertrains that applies a split loss integration approach to incorporate the component losses. The algorithm consistently uses loss models to overcome the drawbacks of efficiency maps, which cannot represent no-load losses at zero torque. The use of loss models is crucial since the optimal solution includes gliding, during which there are no-load losses. An analysis shows, that state-of-the-art nonlinear programming algorithms cannot represent these no-load losses at zero torque with a small modeling error. To effectively compute the powertrain losses with only a small error in comparison to the measurement data, we introduce a tailored combination of nonlinear inequality constraints that interleave two polynomial fits. This approach can properly represent reality. We parameterize the algorithm and validate the vehicle model used with real-world measurement data. Furthermore, we investigate the influence of the proposed interleaved fits by comparing them to a single continuous high-order polynomial fit and to the state of the art. The algorithm is published open source.

Funder

UNICARagil

Federal Ministry of Education and Research of Germany

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Rolling Resistance Modeling on Energy Consumption for a Low Voltage Battery Electric Vehicle;2023 International Symposium on Electromobility (ISEM);2023-10-26

2. Optimization of Powertrain Platform for Electric Passenger Vehicles;2023 IEEE Transportation Electrification Conference & Expo (ITEC);2023-06-21

3. Optimization of Induction Machine Design for Electric Vehicle Powertrain;2023 IEEE International Electric Machines & Drives Conference (IEMDC);2023-05-15

4. Design and Implementation of Intelligent Vehicle Dual Vehicle Merging Based on Image Processing and Electromagnetic Induction;Advances in Communication, Devices and Networking;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3