Preparation and Characterization of Microencapsulated Phase Change Materials for Solar Heat Collection

Author:

Chen Hongbing,Zhao Rui,Wang Congcong,Feng Lianyuan,Li Shuqian,Gong Yutong

Abstract

In this paper, a new type of microencapsulated phase change materials (MPCMs) with docosane as the core and titanium dioxide (TiO2) as the shell was prepared by in situ polymerization. Its phase transition temperature was approximately 40 °C, and it can be used as a phase change material (PCM) in a low-temperature solar heat collection system. The properties of the new material were examined including the microstructure, the chemical elements on the surface of the microcapsules, and thermal conductivity. In addition, to obtain the optimized formula of the microcapsules, single-factor analysis on the emulsifier type, its mass fraction, ultrasonic oscillation time, pH, and core–shell ratio were performed. The results showed that the MPCMs prepared in this paper had a particle size of 2–5 μm and were spherical. Its surface was uniform and smooth without cracks, and the TiO2 was well dispersed around the docosane, completely coating the docosane without impurities. The MPCMs had good performance in terms of thermal properties and heat storage when using 0.40% SDS as an emulsifier, 10 min ultrasonic, a 3.5 pH value, and a 1:1 core–shell ratio. However, the stirring method, time, and experimental reaction temperature also affected the properties of the material, which was not studied in this experiment. We will continue to study these factors in the future.

Funder

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3