Warming Climate-Induced Changes in Lithuanian River Ice Phenology

Author:

Šarauskienė Diana1ORCID,Jakimavičius Darius1ORCID,Jurgelėnaitė Aldona1,Kriaučiūnienė Jūratė1ORCID

Affiliation:

1. Laboratory of Hydrology, Lithuanian Energy Institute, Breslaujos St. 3, LT-44403 Kaunas, Lithuania

Abstract

Due to rising surface air temperatures, river ice is shrinking dramatically in the Northern Hemisphere. Ice cover during the cold season causes fundamental changes in river ecosystems and has important implications for nearby communities and industries. Changes caused by climate warming, therefore, affect the sustainability of key resources, livelihoods, and traditional practices. Thus far, too little attention has been paid to research into the phenomenon of river ice in the Baltic States. Since the observational data of the last sixty years are currently available, we took advantage of the unique opportunity to assess ice regime changes in the gauged rivers by comparing two climatological standard normals. By applying statistical methods (Mann–Kendall, Pettitt, SNHT, Buishand, von Neumann, and Wilcoxon rank sum tests), this study determined drastic changes in ice phenology parameters (freeze-up date, ice break-up date, and ice cover duration) of Lithuanian rivers in the last thirty-year period. The dependence of the selected parameters on local climatic factors and large-scale atmospheric circulation patterns was identified. It was established that the sum of negative air temperatures, as well as the North Atlantic Oscillation, East Atlantic, and Arctic Oscillation indices, have the greatest influence on the ice regime of Lithuanian rivers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference64 articles.

1. Tuckett, R. (2021). Climate Change, Elsevier.

2. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

3. WMO (2023, November 13). WMO Global Annual to Decadal Climate Update, Available online: https://hadleyserver.metoffice.gov.uk/wmolc/WMO_GADCU_2023-2027.pdf.

4. Northern Hemisphere Geography of Ice-covered Rivers;Bennett;Hydrol. Process.,2009

5. Climatic Change and River Ice Breakup;Beltaos;Can. J. Civ. Eng.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3