Affiliation:
1. Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
2. Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10–719 Olsztyn, Poland
Abstract
Forest dendromass is still the major raw material in the production of solid biofuels, which are still the most important feedstock in the structure of primary energy production from renewable energy sources. Because of the high species and type diversity of production residues generated at wood processing sites, as well as at logging sites, the quality of commercial solid biomass produced there has to be evaluated. The aim of this study was to assess the thermophysical characteristics and the elemental composition of ten types of commercial solid biofuels (pinewood sawdust; energy chips I, II, and III; veneer sheets; shavings; birch bark; pine bark; pulp chips; and veneer chips), depending on their acquisition time (August, October, December, February, April, and June). Pulp chips had the significantly lowest moisture content (mean 26.92%), ash content (mean 0.39% DM—dry matter), nitrogen (N) content (mean 0.11% DM), and sulfur (S) content (mean 0.011% DM) and the highest carbon (C) content (mean 56.09% DM), hydrogen (H) content (6.40% DM), and lower heating value (LHV) (mean 13.61 GJ Mg−1). The three types of energy chips (I, II, and III) had good energy parameters, especially regarding their satisfactory LHV and ash, S, and N content. On the other hand, pine and birch bark had the worst ash, S, and N contents, although they had beneficial higher heating values (HHVs) and C contents. Solid biofuels acquired in summer (June) had the lowest levels of moisture and ash and the highest LHV. The highest moisture content and the lowest LHV were found in winter (December).
Funder
National Centre for Research and Development
University of Warmia and Mazury in Olsztyn
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference65 articles.
1. Statistics Poland (2023). Forestry in 2022. Signal Information.
2. Statistics Poland (2022). Statistical Yearbook of Forestry 2022. Statistical Publishing Establishment.
3. Kozakiewicz, P., Jankowska, A., Mamiński, M., Marciszewska, K., Ciurzycki, W., and Tulik, M. (2020). The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests, 11.
4. Mechanical Performance of Scots Pine Wood from Northwestern Poland—A Case Study;Roszyk;BioResources,2020
5. IPCC (2022). Climate Change 2022 Mitigation of Climate Change Summary for Policymakers, Intergovernmental Panel on Climate Change.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献