Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems

Author:

Leonidas Lilian AsimweORCID,Jie Yang

Abstract

In recent years, deep learning has been used in various applications including the classification of ship targets in inland waterways for enhancing intelligent transport systems. Various researchers introduced different classification algorithms, but they still face the problems of low accuracy and misclassification of other target objects. Hence, there is still a need to do more research on solving the above problems to prevent collisions in inland waterways. In this paper, we introduce a new convolutional neural network classification algorithm capable of classifying five classes of ships, including cargo, military, carrier, cruise and tanker ships, in inland waterways. The game of deep learning ship dataset, which is a public dataset originating from Kaggle, has been used for all experiments. Initially, the five pretrained models (which are AlexNet, VGG, Inception V3 ResNet and GoogleNet) were used on the dataset in order to select the best model based on its performance. Resnet-152 achieved the best model with an accuracy of 90.56%, and AlexNet achieved a lower accuracy of 63.42%. Furthermore, Resnet-152 was improved by adding a classification block which contained two fully connected layers, followed by ReLu for learning new characteristics of our training dataset and a dropout layer to resolve the problem of a diminishing gradient. For generalization, our proposed method was also tested on the MARVEL dataset, which consists of more than 10,000 images and 26 categories of ships. Furthermore, the proposed algorithm was compared with existing algorithms and obtained high performance compared with the others, with an accuracy of 95.8%, precision of 95.83%, recall of 95.80%, specificity of 95.07% and F1 score of 95.81%.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3