Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350–2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System

Author:

Radpour Roxanne,Delaney John K.,Kakoulli IoannaORCID

Abstract

There is growing interest in bringing non-invasive laboratory-based analytical imaging tools to field sites to study wall paintings in order to collect molecular information on the macroscale. Analytical imaging tools, such as reflectance imaging spectrometry, have provided a wealth of information about artist materials and working methods, as well as painting conditions. Currently, scientific analyses of wall paintings have been limited to point-measurement techniques such as reflectance spectroscopy (near-ultraviolet, visible, near-infrared, and mid-infrared), X-ray fluorescence, and Raman spectroscopy. Macroscale data collection methods have been limited to multispectral imaging in reflectance and luminescence modes, which lacks sufficient spectral bands to allow for the mapping and identification of artist materials of interest. The development of laboratory-based reflectance and elemental imaging spectrometers and scanning systems has sparked interest in developing truly portable versions, which can be brought to field sites to study wall paintings where there is insufficient space or electrical power for laboratory instruments. This paper presents the design and testing of a simple hyperspectral system consisting of a 2D spatial spot scanning spectrometer, which provides high spectral resolution diffuse reflectance spectra from 350 to 2500 nm with high signal to noise and moderate spatial resolution (few mm). This spectral range at high spectral resolution was found to provide robust chemical specificity sufficient to identify and map many artists’ materials, as well as the byproducts of weathering and conservation coatings across the surface of ancient and Byzantine Cypriot wall paintings. Here, we present a detailed description of the hyperspectral system, its performance, and examples of its use to study wall paintings from Roman tombs in Cyprus. The spectral/spatial image processing workflow to make maps of pigments and constituent painting materials is also discussed. This type of configurable hyperspectral system and the imaging processing workflow offer a new tool for the field study of wall paintings and other immovable heritage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3