Synergetic Adsorption of Dyes in Water by Three-Dimensional Graphene and Manganese Dioxide (PU@RGO@MnO2) Structures for Efficient Wastewater Purification

Author:

Zong Shirong12,Jiang Jijun1,Wang Guodong1,Zhong Jin1,Tang Chunlan1,Zhou Lingxiang1,Yang Fan1,Yan Wei2

Affiliation:

1. Yannan Yuntianhua Co., Ltd., Kunming 650228, China

2. Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The improper discharge of industrial wastewater causes severe environmental pollution and the textile industry’s dye usage contributes significantly to industrial wastewater pollution. Hence, an effective method for removing the harmful substance methylene blue (MB) from dye wastewater is proposed. This method adopts a three-dimensional graphene composite material based on manganese dioxide (MnO2), named polyurethane@ reduced graphene oxide@ MnO2 (PU@RGO@MnO2). First, graphene is prepared with hydrazine hydrate as a reducing agent and polyurethane as a framework. MnO2 nanoparticles are synthesized by the reaction of potassium permanganate (KMnO4) with carbon. These nanoparticles are then loaded onto the three-dimensional framework to create the composite material. Finally, adsorption and removal experiments for MB are conducted to compare the performance of the composite material. The results indicate that the graphene based on the polyurethane framework exhibits favorable mechanical properties. The unique three-dimensional lattice structure provides abundant active sites for loading MnO2 nanoparticles, significantly increasing the contact area between the adsorbent and MB solution and thus improving the adsorbent utilization rate (reaching 94%). The nanoparticles synthesized through the reaction of KMnO4 with carbon effectively suppress the agglomeration phenomenon. Additionally, the introduction of dynamic adsorption and dynamic removal modes, aided by a water pump, substantially enhances the adsorption and removal rates, showcasing excellent performance. The research on a multi-porous three-dimensional structure holds significant practical value in water treatment, offering a new research direction for dye wastewater treatment.

Funder

Major Science and Technology Special Plan Project of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3