A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves

Author:

Janardhana Ranjith D.1,Jackson Nathan12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA

2. Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

The integration of high-frequency acoustic waves with microfluidics has been gaining popularity as a method of separating cells/particles. A standing surface acoustic wave (sSAW) device produces constructive interference of the stationary waves, demonstrating an increase in cell separating efficiency without damaging/altering the cell structure. The performance of an sSAW device depends on the applied input signal, design of the IDT, and piezoelectric properties of the substrate. This work analyzes the characteristics of a validated 3D finite element model (FEM) of LiNbO3 and the effect on the displacement components of the mechanical waves under the influence of sSAWs by considering XY-, YX-, and 1280 YX-cut LiNbO3 with varying electrode length design. We demonstrated that device performance can be enhanced by the interference of multiple waves under a combination of input signals. The results suggest that 1280 YX-cut LiNbO3 is suitable for generating higher-amplitude out-of-plane waves which can improve the effectiveness of acoustofluidics-based cell separation. Additionally, the findings showed that the length of the electrode impacts the formation of the wavefront significantly.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3