A Review of Molecular Dynamics Simulation of Different Ti-Al-Based Alloys

Author:

Li Ningning12ORCID,Hao Zhenjie12,Xu Lei12,Tang Mingqi12,Wei Leyu12,Wang Lifei3ORCID

Affiliation:

1. School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. Henan Engineering Research Center on Special Materials and Applications of Water Conservancy and Hydropower Engineering, Zhengzhou 450045, China

3. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Ti-Al-based alloys, particularly two-phase TiAl and Ti3Al alloys, have garnered significant attention as potential replacements for various high-temperature structural materials due to their exceptional properties, including low density, oxidation resistance, and high strength at elevated temperatures. Despite these advantages, experimental studies on the microstructure evolution of Ti-Al-based alloys under complex conditions remain challenging to observe and characterize. This review article examines the current research on molecular dynamics (MD) simulations of Ti-Al-based alloys, focusing on two-phase Ti-Al alloys, Ti-Al amorphous alloys, Ti-Al composite materials, and the welding and multi-layer/film applications of Ti-Al alloys. This review highlights the unique capabilities of MD simulations in predicting the behavior of Ti-Al-based alloys and addresses existing scientific challenges. Furthermore, this article discusses future research directions and development prospects in this field.

Funder

Natural Science Foundation of Shanxi province

Central Government Guided Local Science and Technology development projects

China Postdoctoral Science Foundation

High-Level Introduction of Talent Research Start-Up and Electric Power

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3