Research on Microstructural Evolution Behavior of Ni-Based Single-Crystal Alloy with Re Based on Non-Linear Ultrasonic Lamb Wave and Molecular Dynamics Method

Author:

Li Ben12,Zhang Yilin1,Zhou Hongyan1,Li Xuewu3

Affiliation:

1. Engineering Research Center of Additive Manufacturing Aeronautical Materials of Henan Province, Nanyang Institute of Technology, Nanyang 473004, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

3. School of Mechanical and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Interface dislocation networks have a great influence on the mechanical properties of the new Ni-based single-crystal alloy (NSC) containing Re, but it is difficult to find out the structural evolution behaviors at the micro-level. Thus, molecular dynamics (MD) simulation is used to analyze the atomic potential energy change and dislocation evolution mechanism, and non-linear characteristic parameters are used to analyze the microstructure evolution of NSC. First, a new model of Ni-Al-Re that is closer to the real properties of the material is established using the MD method according to the optimal volume ratio of matrix phase to precipitate phase. Then, the MD models of NSC with different contents of Re are calculated and analyzed under compressive and tensile loads. The results show that with an increase in Re atoms, the atomic potential energy at the interface dislocation networks is reduced; thus, the stability of the system is enhanced, and the hindrance of the interface dislocation networks to the dislocation movement of the matrix phase is strengthened. At the same time, the number of HCP structures and OISs formed by the destruction of the intact FCC structures also decreases. In the non-linear ultrasonic experiment, with the increase in Re atoms, the non-linear enhancement of the microstructure of the NSC leads to an increase in the corresponding non-linear characteristic parameters. Accordingly, the microstructural evolution behaviors of the phase interface of the new NSC can be effectively explored using the combination of MD simulation and non-linear ultrasonic experimentation. The results of this study lay a foundation for the subsequent research of the microscopic defects of NSCs by using ultrasonic phased-array technology.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Scientific and Technological Projects of Henan Province

Shanxi Innovation Capability Support Program

Nanyang Institute of Technology

Youth Science Foundation of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3