Position Tracking of Multiple Robotic Manipulator Systems Associated with Communication Strength Dynamics

Author:

Zhao Juanxia1,Wang Yinhe1,Gao Peitao2,Li Shengping3,Chen Haoguang4

Affiliation:

1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

2. School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510006, China

3. MOE Key Laboratory of Intelligent Manufacturing, Shantou University, Shantou 515063, China

4. College of Computing, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China

Abstract

In general, a multiple robotic manipulator system (MRMS) with uncertainties can be considered a composition system with a robotic manipulator subsystem (RMS) and a communication strength subsystem (CSS), and both subsystems are coupled to each other. In this paper, a new position tracking control scheme is proposed for the MRMS while considering the communication strength dynamics between robotic manipulators. The control scheme designed in this paper consists of two parts: the first part is to design the control protocol in the RMS, and the second part is to design the coupling relationship in the CSS. Through these two parts, we can achieve the position tracking of an MRMS. Firstly, the dynamical mathematical model of the RMS and CSS in the MRMS is constructed, and the corresponding assumptions are given. Then, the corresponding stability analysis is proposed, which provides the basis for a theoretical understanding of the underlying problem. Finally, an illustrative example is presented to verify the effectiveness of the proposed control scheme.

Funder

Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education of China

National Natural Science Foundation of China

Research Project of University of Electronic Science and Technology of China, Zhongshan Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3