Abstract
Ag, Cu, Zn, Ti, and Au nanoparticles show enhanced photocatalytic properties. Efficient indoor disinfection strategies are imperative to manage the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virucidal agents, such as ethanol, sodium hypochlorite, 222-nm UV light, and electrolyzed water inactivate SARS-CoV-2 in indoor environments. Tungsten trioxide (WO3) photocatalyst and visible light disinfect abiotic surfaces against SARS-CoV-2. The titanium dioxide (TiO2)/UV system inactivates SARS-CoV-2 in aerosols and on deliberately contaminated TiO2-coated glass slide surfaces in photocatalytic chambers, wherein 405-nm UV light treatment for 20 min sterilizes the environment and generates reactive oxygen species (ROS) that inactivate the virus by targeting S and envelope proteins and viral RNA. Mesoscopic calcium bicarbonate solution (CAC-717) inactivates pathogens, such as prions, influenza virus, SARS-CoV-2, and noroviruses, in fluids; it presumably acts similarly on human and animal skin. The molecular complexity of cementitious materials promotes the photocatalysis of microorganisms. In combination, the two methods can reduce the pathogen load in the environment. As photocatalysts and CAC-717 are potent disinfectants for prions, disinfectants against prionoids could be developed by combining photocatalysis, gas plasma methodology, and CAC-717 treatment, especially for surgical devices and instruments.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献