Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by Bacillus megaterium LVN01 Using Biogas Digestate
-
Published:2024-07-09
Issue:3
Volume:4
Page:1057-1078
-
ISSN:2673-8007
-
Container-title:Applied Microbiology
-
language:en
-
Short-container-title:Applied Microbiology
Author:
Martínez Amanda Lucía Mora1, Yepes-Pérez María1, Contreras Karent Alexandra Carrero1, Moreno Paola Eliana Zapata1
Affiliation:
1. Grupo de Producción, Estructura y Aplicación de Moléculas, Faculty of Science, Universidad Nacional de Colombia sede Medellín, Street 59A #63–20, Medellín 050003, Colombia
Abstract
The Bacillus megaterium LVN01 species native to Colombia has demonstrated the ability to metabolize different coproducts or industrial waste (such as fique juice, cane molasses, and residual glycerol) and accumulate polyhydroxybutyrate (PHB), giving it potential in the bioplastics industry. In this research, the potential of liquid digestate as a carbon source for the production of PHA polymers in fermentation processes with this bacterial strain was evaluated. Favorably, it was found that B. megaterium utilizes the nutrients from this residual substrate to multiply appropriately and efficiently synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Bench-scale aerobic batch fermentation, under the operational conditions of this research [volume: 3 L; temperature: 30.8 °C; agitation: 400 rpm; pH: 7.0 ± 0.2; dissolved oxygen: 100% saturation; antifoam: 10% (v/v)], generated maximum values of dry cell weight (DCW) (0.56 g cell L−1) at 60 h, while the maximum PHBV yield (360 mg PHBV L−1) occurred at 16 h, which is very favorable for sustainable degradable bioplastics production. Additionally, GC–MS and NMR analyses confirmed that the PHBV copolymer synthesized by B. megaterium is made up of the monomers 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Furthermore, the thermal properties determined by TGA (Tonset = 283.1 °C; Tendset = 296.98 °C; Td = 290.114 °C) and DSC (Tm = °C 155.7 °C; ΔHf = 19.80 J g−1; Xcr = 18.17%) indicate that it is a thermally stable biopolymer with low percentages of crystallinity, providing flexibility that facilitates molding, adaptation, and application in various industrial sectors.
Funder
Universidad Nacional de Colombia
Reference75 articles.
1. El surgimiento de los bioplásticos: Un estudio de nichos tecnológicos;Acta Univ.,2020 2. Plastics Europe, Enabling a Sustainable Future (2024, March 20). Plastics—The Fast Facts. Infografía. Available online: https://plasticseurope.org/es/plastics-europe-publica-plastics-the-fast-facts-2023/. 3. Saratale, R.G., Cho, S.K., Saratale, G.D., Kadam, A.A., Ghodake, G.S., Kumar, M., Bh Bharagava, R.N., Kumar, G., Kim, D.S., and Mulla, S.I. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol., 325. 4. Sohn, Y.J., Kim, H.T., Baritugo, K.A., Jo, S.Y., Song, H.M., Park, S.Y., Park, S.K., Pyo, J., Cha, H.G., and Kim, H. (2020). Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol. J., 15. 5. Organización de las Naciones Unidas (2023, April 25). Todo lo que necesitas saber sobre la contaminación por plásticos. ONU programa para el medio ambiente., Available online: https://www.unep.org/es/noticias-y-reportajes/reportajes/todo-lo-que-necesitas-saber-sobre-la-contaminacion-por-plasticos.
|
|