Trichoderma: Population Structure and Genetic Diversity of Species with High Potential for Biocontrol and Biofertilizer Applications

Author:

Ismaiel Adnan1ORCID,Lakshman Dilip K.1ORCID,Jambhulkar Prashant P.2ORCID,Roberts Daniel P.1

Affiliation:

1. Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA

2. Department of Plant Pathology, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India

Abstract

Certain Trichoderma isolates provide biofertilizer, biocontrol, and other plant-beneficial activities while inhabiting the soil or internal plant tissue, and their use in agricultural systems can contribute to sustainable food production. It is thought that colonization of soil or internal plant tissue is fundamental for biocontrol and biofertilizer applications. Our collective analyses of prior surveys, where the tef1α sequence was almost exclusively used to identify Trichoderma species, showed that isolates from the Harzianum complex clade, the T. asperellum/T. asperelloides group, T. virens, T. hamatum, and T. atroviride were prevalent in soil and/or as endophytes. Population structure and genetic diversity based on the genetic markers tef1α, rpb2, and ITS were investigated, and new lineages with statistical bootstrap support within T. atroviride, T. asperellum, T. hamatum, and T. virens populations were found. The nearest relatives of some of these species were also revealed. Choosing isolates from among more than 500 known Trichoderma species for use in non-targeted evaluation screens for biocontrol or biofertilizer applications is time-consuming and expensive. Preferentially selecting isolates from T. atroviride, T. asperellum/T. asperelloides, T. hamatum, the T. harzianum complex clade, T. virens, and possibly nearest relatives may speed the identification of candidates for commercialization due to the demonstrated ability of these species to successfully inhabit the soil and internal plant tissue. To our knowledge, this is the first report where dominant soil and endophytic Trichoderma species were identified from past survey data and population structure and genetic diversity analyses conducted.

Funder

USDA-ARS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3