The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study

Author:

Sarjit Amreeta1,Cheah Yi2,Dykes Gary A.3ORCID

Affiliation:

1. Institute of Innovation, Science and Sustainability, Federation University Australia, Gippsland, VIC 3842, Australia

2. School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia

3. School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia

Abstract

This study examined whether the presence/absence of biofilm-associated genes may indicate the potential for differences in the biofilm formation among the Salmonella species/subspecies. We conducted an in vitro study on the biofilm formation by eighteen Salmonella strains of different species/subspecies. Strains belonging to subspecies enterica were generally poorer biofilm formers than strains belonging to species bongori and subspecies arizonae, diarizonae, and indica. A broader in silico study was subsequently conducted. The presence/absence of 57 biofilm-associated genes was further investigated among 323 Salmonella whole genomes of various species/subspecies. The lpfE gene was present in in 88.2% of subspecies enterica but was absent in ~90.2–100% of other subspecies. The sirA gene was present in 11.8% of subspecies enterica and 2.9% of S. diarizonae genomes while absent in other species/subspecies. The lpfe gene and sirA gene in subspecies enterica negatively correlated with environmental biofilm formation. The csrB gene was present in 71.4% of the S. arizonae and 94.3% of S. diarizonae genomes but absent in other species/subspecies. The absence of csrB in subspecies enterica positively correlated with weaker environmental biofilm formation. This may contribute to subspecies arizonae and diarizonae being better biofilm formers.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3