Abstract
Three series of catalysts consisting of gold (Au), platinum (Pt), or gold-platinum bimetallic nanoparticles (NPs) with controlled sizes (Au NPs 10 ± 2 nm, Pt NPs 6 ± 2 nm) anchored on hierarchical micro-/meso-/macroporous silica were successfully developed and systematically evaluated for the selective oxidation of aromatic alcohols to their corresponding aldehydes. The catalysts were prepared by the sol-immobilization method using as-made Au NPs and/or Pt NPs colloids; the silica supports were prepared with controlled pore structures and the hierarchical porous structures of catalysts were created by controllable desilication via the alkaline solution of the metal colloids. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and these results showed no synergistic effect between Au and Pt on boosting the catalytic performance, whereas they demonstrated a clear dependence of catalytic conversions and reaction rates on the structural porosity of Au-Pt bimetallic catalysts. Our findings could potentially inspire peer researchers and scientists to develop designer porous catalysts and processes in the selective organic conversions.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献