Smart Greenhouse Based on ANN and IOT

Author:

Tawfeek Medhat A.ORCID,Alanazi Saad,El-Aziz A. A. AbdORCID

Abstract

The effective exploitation of smart technology in applications helps farmers make better decisions without increasing costs. Agricultural Research Centers (ARCs) are continually updating and producing new datasets from applied research, so the smart model should dynamically address all surrounding agricultural variables and improve its expertise from all available datasets. This research concentrates on sustainable agriculture using Adaptive Particle Swarm Optimization (PSO) and Artificial Neural Networks (ANNs). Therefore, if a new related dataset is created, this new incoming dataset is merged with the existing dataset. The proposed PSO then bypasses the summarization of the dataset. It deletes the least essential and speculative records and keeps the records that are the most influential in the classification process. The summarized dataset is interposed in the training process without re-establishing the system again by modifying the classical ANN. The proposed ANN comprises an adaptive input layer and an adaptive output layer to handle the process of continuously updating the datasets. A comparative study between the proposed adaptive PSO-ANN and other known and used methods on different datasets has been applied. The results prove the quality of the proposed Adaptive PSO-ANN from various standard measurements. The proposed PSO-ANN achieved an accuracy of 94.8%, precision of 91.15%, recall of 97.93%, and F1-score of 94.42%. The smart olive cultivation case study is accomplished with the proposed adaptive PSO-ANN and technological tools from the Internet of Things (IoT). The advanced tools from IoT technology are established and analyzed to control all the required procedures of olive cultivation. This case study addresses the necessary fertilizers and irrigation water to adapt to the changes in climate. Empirical results show that smart olive cultivation using the proposed adaptive PSO-ANN and IoT has high quality and efficiency. The quality and efficiency are measured by diversified metrics such as crop production and consumed water, which confirm the success of the proposed smart olive agriculture method.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. A decision support system based on multi sensor data fusion for sustainable greenhouse management;J. Clean. Prod.,2018

2. Intelligent Monitoring and Control of Greenhouse Environment;Int. J. Eng. Technol. Sci. Res. (IJETSR),2017

3. FAO (2017). Food and Agriculture Organization of the United Nations, FAOSTAT. Available online: http://www.fao.org/faostat/en/.

4. A cost-effective IoT-based control system for smart greenhouses powered by solar energy;Int. J. Energy Environ.,2019

5. Ferrandez, J., García-Chamizo, J.M., Nieto-Hidalgo, M., and Mora-Martínez, J. (2018). Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors, 18.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3