Abstract
Existing inflexible and ineffective traffic light control at a key intersection can often lead to traffic congestion due to the complexity of traffic dynamics, how to find the optimal traffic light timing strategy is a significant challenge. This paper proposes a traffic light timing optimization method based on double dueling deep Q-network, MaxPressure, and Self-organizing traffic lights (SOTL), namely EP-D3QN, which controls traffic flows by dynamically adjusting the duration of traffic lights in a cycle, whether the phase is switched based on the rules we set in advance and the pressure of the lane. In EP-D3QN, each intersection corresponds to an agent, and the road entering the intersection is divided into grids, each grid stores the speed and position of a car, thus forming the vehicle information matrix, and as the state of the agent. The action of the agent is a set of traffic light phase in a signal cycle, which has four values. The effective duration of the traffic lights is 0–60 s, and the traffic light phases switching depends on its press and the rules we set. The reward of the agent is the difference between the sum of the accumulated waiting time of all vehicles in two consecutive signal cycles. The SUMO is used to simulate two traffic scenarios. We selected two types of evaluation indicators and compared four methods to verify the effectiveness of EP-D3QN. The experimental results show that EP-D3QN has superior performance in light and heavy traffic flow scenarios, which can reduce the waiting time and travel time of vehicles, and improve the traffic efficiency of an intersection.
Funder
The National Key Research and Development Program of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference27 articles.
1. Reinforcement learning in urban network traffic signal control: A systematic literature review;Noaeen;Expert Syst. Appl.,2022
2. Parallel systems for traffic control: A rethinking;Li;IEEE Trans. Intell. Transp. Syst.,2016
3. Optimizing networks of traffic signals in real-time SCOOT method;Robertson;IEEE Trans. Veh. Technol.,1991
4. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits;Sims;IEEE Trans. Veh. Technol.,1980
5. Cools, S.B., Gershenson, C., and D’Hooghe, B. (2013). Advances in Applied Self-Organizing Systems, Springer.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献