Modification of Flux Oxygen Behaviour via Co-Cr-Al Unconstrained Metal Powder Additions in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidence

Author:

Coetsee TheresaORCID,De Bruin Frederik

Abstract

Aluminium metal is avoided as main reactant in submerged arc welding (SAW) because it is easily oxidised in this process. Aluminium is an effective de-oxidiser and can be used to prevent Cr and Co loss to the slag by preventing oxidation of these metals. In our novel application of aluminium metal powder in SAW we demonstrate the modification of flux oxygen behaviour. The Co-Cr-Al-alloyed weld metal total oxygen content is decreased to 180 ppm O, compared to 499 ppm O in the weld metal from the original flux, welded without metal powder additions. The flux oxygen behaviour is modified by the added aluminium powder through the lowering of the original flux-induced partial oxygen pressure in the arc cavity and at the molten flux-weld pool interface. Carbon steel was alloyed to 5.9% Co, 6.3 % Cr and 5.1% Al at 81% Co yield, 87% Cr yield and 70% Al yield. Gas-slag-alloy thermochemical equilibrium calculations confirm the partial oxygen-pressure-lowering effect of aluminium. BSE (backscattered electron) images of the three-dimensional (3D) post-weld slag sample show dome structures which contain features of vapour formation and re-condensation. These features consist of small spheres (sized less than 10 μm) and smaller needle-shaped particles coalescing into a porous sphere. EDX analyses show that the spheres consist of Si-Na-K-Fe-Mn-Co-Cr oxy-fluoride and the needles consist of low oxygen Si-Al-Ca-Mg-Na-K-Fe-Mn-Co-Cr oxy-fluoride. The element distribution and speciation data from the EDX analyses confirm modification of the flux oxygen behaviour via aluminium powder addition in lowering the partial oxygen pressure, which in turn prevents oxidation of Cr and Co and minimise losses to the slag.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference43 articles.

1. Physical phenomena in the weld zone of submerged arc welding—A Review;Weld. J.,2019

2. O’Brien, A. (2011). Welding Handbook—Materials and Applications, Part 1, American Welding Society (AWS). [9th ed.].

3. Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments;Weld. J.,1985

4. Electrochemically generated oxygen contamination in submerged arc welding;Weld. J.,1990

5. The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2O3 based fluxes;Weld. J.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3