Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production

Author:

Wyszkowski Mirosław1ORCID,Kordala Natalia1ORCID

Affiliation:

1. Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland

Abstract

The aim of the study was to determine the feasibility of using maize biomass for the phyto-stabilisation of iron-contaminated soils under conditions involving the application of humic acids (HAs). The biomass yield content of maize trace elements was analysed. In the absence of HAs, the first dose of Fe-stimulated plant biomass growth was compared to the absence of Fe contamination. The highest soil Fe contamination resulted in a very large reduction in maize biomass yield, with a maximum of 93%. The addition of HAs had a positive effect on plant biomass, with a maximum of 53%, and reduced the negative effect of Fe. There was an almost linear increase in maize biomass yield with increasing doses of HAs. Analogous changes were observed in dry matter content in maize. Soil treatment with Fe caused a significant increase in its content in maize biomass, with a maximum increase of three times in the series without HAs. There was also a decrease in Co, Cr and Cd content (by 17%, 21% and 44%, respectively) and an increase in Cu, Ni, Pb, Zn and Mn accumulation (by 32%, 63%, 75%, 97% and 203%, respectively). The application of HAs to the soil reduced the content of this trace element and its growth in the biomass of this plant under the influence of Fe contamination. They had a similar effect on other trace elements contained in the maize biomass. HAs contributed to a decrease in the level of most of the tested trace elements (except Ni and Pb) in the maize biomass. The reduction ranged from 11% (Cr and Mn) to 72% (Cd). The accumulation of Ni and Pb in the maize biomass was higher in the objects with HAs application than in the series without their addition. Humic acid application is a promising method for the reduction of the effects of soil Fe contamination on plants.

Funder

University of Warmia and Mazury in Olsztyn

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3