A Novel Method to Calculate Water Influx Parameters and Geologic Reserves for Fractured-Vuggy Reservoirs with Bottom/Edge Water

Author:

Yao Chao1,Yan Ruofan2,Zhou Fei1,Zhang Qi3,Niu Ge1,Chen Fangfang1,Cao Wen1,Wang Jing2

Affiliation:

1. Tarim Oilfield Company, PetroChina, Korla 841000, China

2. State Key Laboratory of Oil and Gas Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

3. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Abstract

In practical oilfield production, the phenomenon of water influx typically shortens the water-free recovery period of wells, leading to water flooding and causing a sharp decline in the production well yields, bringing great harm to production. Water invasion usually occurs as a result of the elastic expansion of the water as well as the compaction of the aquifer pore space. However, it can be due to the special characteristics of fractured-vuggy reservoirs such as non-homogeneity and the discrete distribution of the pore spaces. It is challenging to use traditional seepage flow theories to analyze the characteristics of water influx. Also, reservoir numerical simulation methods require numerous parameters which are difficult to obtain, which significantly reduces the accuracy of the results. In this study, considering the driving energy for water influx, a water influx characteristic model was obtained by fitting a graph plate. Subsequently, an iterative calculation method was used to simultaneously obtain water influx volume and OOIP. The aquifer to hydrocarbon ratio was determined by fitting the water influx curve with the graphic plate. Results show that the calculation method is sensitive to the values of reservoir pressure and the crude oil formation volume factor. After applying the method to one field case, it was discovered that water influx performance can be characterized into two types, i.e., linear water influx and logarithmic water influx. In the early stages, the water influx rate of logarithmic water influx is greater compared to linear water influx. However, the volume and energy of waterbody are limited, and the water invasion phenomenon occurs almost exclusively within a short period after the invasion. On the other hand, the volume of waterbody invaded by linear water influx is larger, and it can maintain a stable rate of water influx. The results of the study can provide theoretical support for the waterbody energy evaluation and dynamic analysis of water influx, as well as the control and management of water in these types of reservoirs.

Funder

Research on New Mechanisms and Methods for Enhancing Recovery in Condensate Gas Reservoirs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3