Direct Conversion of Bovine Dermal Fibroblasts into Myotubes by Viral Delivery of Transcription Factor bMyoD

Author:

Son Boram,Lee Seong Ho,Hong Seyoung,Kwon Miji,Joo JinmyoungORCID,Lim Kwang Suk,Park Hee HoORCID

Abstract

Direct reprogramming of somatic cells to myoblasts and myotubes holds great potential for muscle development, disease modeling and regenerative medicine. According to recent studies, direct conversion of fibroblasts to myoblasts was performed by using a transcription factor, myoblast determination protein (MyoD), which belongs to a family of myogenic regulatory factors. Therefore, MyoD is considered to be a key driver in the generation of induced myoblasts. In this study, we compared the direct phenotypic conversion of bovine dermal fibroblasts (BDFs) into myoblasts and myotubes by supplementing a transcription factor, bovine MyoD (bMyoD), in the form of recombinant protein or the bMyoD gene, through retroviral vectors. As a result, the delivery of the bMyoD gene to BDFs was more efficient for inducing reprogramming, resulting in direct conversion to myoblasts and myotubes, when compared with protein delivery. BDFs cultured with retrovirus encoding bMyoD increased myogenic gene expression, such as MyoG, MYH3 and MYMK. In addition, the cells expressed myoblast or myotube-specific marker proteins, MyoG and Desmin, respectively. Our findings provide an informative tool for the myogenesis of domestic-animal-derived somatic cells via transgenic technology. By using this method, a new era of regenerative medicine and cultured meat is expected.

Funder

Korea Evaluation Institute of Industrial Technology

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3