Study on the Vibration Variation of Rock Slope Based on Numerical Simulation and Fitting Analysis

Author:

Yan Bing,Liu Ming,Meng Qingsheng,Li Yao,Deng Shenggui,Liu Tao

Abstract

In engineering blasting, the slope surfaces in the blasting area exert various effects on the blast vibration velocity. For example, the slope effect and the whipping effect are generated in the slope area, which will influence the blast vibration velocity. The slope area is the key protection area for many projects; therefore, it is of practical value to explore the influence of slope surface on blast vibration speed for the prediction of blast vibration and protection against it. The influence of slope effect and whipping effect on blast vibration velocity in the slope area was analyzed by numerical simulation and fitting. The field monitoring data were fitted to the blast vibration velocity prediction formula. According to the obtained fitting formula, we inferred that vibration speed amplification occurred in the slope area. Numerical simulation was carried out using the ANSYS/LS-DYNA program. Using the above two methods, whether the slope effect and whip tip effect occurred in the study area was verified. By numerical simulation, we established three-dimensional (3D) slope models for four different working conditions. We simulated the complete blasting process and the consistency between the simulation results, and the field data proved the reliability of the numerical simulation. Based on the results of the numerical simulation, we explored the variation of blasting vibration velocity under different height difference conditions. Finally, we explored the distribution law of blasting vibration at the slope surface and inside the slope.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3